Recent Progress on the Tate Conjecture

نویسنده

  • BURT TOTARO
چکیده

We survey the history of the Tate conjecture on algebraic cycles. The conjecture is closely related with other big problems in arithmetic and algebraic geometry, including the Hodge and Birch–Swinnerton-Dyer conjectures. We conclude by discussing the recent proof of the Tate conjecture for K3 surfaces over finite fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tate Conjecture and Mixed Perverse Sheaves

Using the theory of mixed perverse sheaves, we extend arguments on the Hodge conjecture initiated by Lefschetz and Griffiths to the case of the Tate conjecture, and show that the Tate conjecture for divisors is closely related to the de Rham conjecture for nonproper varieties, finiteness of the Tate-Shafarevich groups, and also to some conjectures in the analytic number theory. Dedicated to Joh...

متن کامل

Even Galois Representations and the Fontaine–mazur Conjecture. Ii

be a continuous irreducible representation unramified away from finitely many primes. In [FM95], Fontaine and Mazur conjecture that if ρ is semi-stable at p, then either ρ is the Tate twist of an even representation with finite image or ρ is modular. In [Kis09], Kisin establishes this conjecture in almost all cases under the additional hypotheses that ρ|Dp has distinct Hodge–Tate weights and ρ ...

متن کامل

Conics over function fields and the Artin-Tate conjecture

We prove that the Hasse principle for conics over function fields is a simple consequence of a provable case of the Artin-Tate conjecture for surfaces over finite fields. Hasse proved that a conic over a global field has a rational point if and only if it has points over all completions of the global field, an instance of the so-called local-global or Hasse principle. The case of the rational n...

متن کامل

The Tate Conjecture for Powers of Ordinary Cubic Fourfolds over Finite Fields

Recently N. Levin proved the Tate conjecture for ordinary cubic fourfolds over finite fields. In this paper we prove the Tate conjecture for selfproducts of ordinary cubic fourfolds. Our proof is based on properties of so called polynomials of K3 type introduced by the author about a dozen years ago.

متن کامل

The Tate Conjecture for Certain Abelian Varieties over Finite Fields

In an earlier work, we showed that if the Hodge conjecture holds for all complex abelian varieties of CM-type, then the Tate conjecture holds for all abelian varieties over finite fields (Milne 1999b). In this article, we extract from the proof a statement (Theorem 1.1) that sometimes allows one to deduce the Tate conjecture for the powers of a single abelian variety A over a finite field from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017